
Solving Lunar Lander with Deep Q-Network

Le Hoang Van
vhoang31@gatech.edu

Abstract— The aim of this project is to build a reinforcement
learning agent to navigate a space vehicle from a starting point
in space to the landing pad without crashing. We experimented
with a variant of the Deep Q-Network model used by [6] to solve
dozens of Atari games because of environment configuration
similarities. Using tuned hyper-parameters including discount
rate, learning rate, and epsilon decay rate among others, our
agent was able to solve the Lunar Lander in less than 600
episodes and achieved a score of more than 200 over 100
consecutive episodes with no learning. The latest commit hash
1 of the supporting repository for this project is included.

I. PROBLEM STATEMENT

The environment is called LunarLander-v2 which is
part of the Python gym package [3]. An episode always
begins with the lander module descending from the top of
the screen. At each step, the agent is provided with the
current state of the space vehicle which is an 8-dimensional
vector of real values, indicating the horizontal and vertical
positions, orientation, linear and angular velocities, state of
each landing leg (left and right) and whether the lander has
crashed. The agent then has to make one of four possible
actions, namely do nothing, fire left orientation engine, fire
main engine, or fire right orientation engine. These are 4
levers the agent must learn to control in order to land safely.

The scoring system is clearly laid out in OpenAIs en-
vironment description. Reward for moving from the top of
the screen to landing pad and zero speed is about 100..140
points. If lander moves away from landing pad it loses reward
back. Episode finishes if the lander crashes or comes to rest,
receiving additional -100 or +100 points. Each leg ground
contact is +10. Firing main engine is -0.3 points each frame.
Solved is 200 points. Landing outside landing pad is possible,
but is penalized. Fuel is infinite, so an agent can learn to fly
and then land on its first attempt.

The episode can also finish when it hits the maximum
episode length of 1000 steps, as shown in the source code
(max_episode_steps=1000). A successful solution is
one that can get the agent consistently land on the target
area safely i.e. with both legs touching the ground at (0, 0)
at zero speed, yielding an average score of at least 200 points
over 100 consecutive episode.

II. EXPLORATORY ANALYSIS

Without any assumptions or knowledge, the best way to
explore is to randomly pick an action in each state and follow
it. We ran 1000 episodes using a random agent, i.e. one that
does not have any learning, to see if randomized exploration
could help us win the game. Figures 1 and 2 shows the

1fcf65d9609434df8f4327ec5c0f69a76de33887f

performance of the random agent in terms of reward and
episode length.

600 500 400 300 200 100 0
Frequency

0

25

50

75

100

125

150

175

200

R
ew

ar
d

Mean reward: -232

Fig. 1: Rewards over 1000 episodes conducted by a random
agent.

60 80 100 120 140 160
Frequency

0

20

40

60

80

100

E
pi

so
de

 le
ng

th

Fig. 2: Episode lengths over 1000 episodes conducted by a
random agent.

As expected, all episodes resulted in failure, with mean
reward well below -200 indicating that the vehicle crashed
most of the time. The chance of an unlearned agent landing
is virtually nought. In addition, it didnt take too long for an
episode to finish; most episodes terminated in around 100
steps.

III. TECHNIQUES

Q-learning is one of the popular algorithms used in rein-
forcement learning because of its intuitiveness and simplicity.
However it only works well with environments that have
discrete state and action spaces. In addition, the space sizes
must be relatively small, or else the Q-table would be too
big and it would take ages to converge to the true Q-values.
For our problem at hand, while the action space is discrete,
the state space is continuous in 8 dimensions. Even though



discretization of state space is possible, it is not a viable
option since the memory requirement grows exponentially
with number of discrete units chosen per state dimension.
Interestingly, having a complex, continuous state space with
a discrete set of actions is also characteristic of Atari games,
which can be solved quite efficiently with a variant of deep
Q-learning, called deep Q-network (DQN), proposed in [6].
This project employed a similar, albeit simpler, structure in
which we omit the convolutional layers from the network.

DQN is simply an extension of a simple Q-network that
is built upon tabular Q-learning. When the Q-table becomes
too large to compute over as a result of infinitely many
states, neural networks come to the rescue. By increasing
the number of layers and nodes per layer, we can get a
reasonably accurate function approximator that can map any
number of possible states to their Q-values. While neural
networks allow for greater flexibility, they come at a cost
of stability: it turns out that Q-learning may suffer from
instability and divergence when combined with an nonlinear
Q-value function approximation and bootstrapping. DQN
introduces two innovative additions that can stabilize training
and allow for faster convergence:

• Experience replay: The reason why experience replay
is helpful has to do with the fact that successive states
are highly similar. This means that there is a significant
risk that the network will completely forget about what
it is like to be in state it has not seen in a while. This is
detrimental to learning because catastrophic events that
happened long ago might be forgotten and cannot be
learned. Replaying experience prevents this by storing
a fixed number of recent experiences (old ones will
be discarded as new ones come in) in a memory
replay buffer. From this buffer, we draw random batches
of experiences, or memories to learn from and make
updates to the network [4].

• Separate Q-target network: In vanilla Q-learning, we are
only updating a guess for Q-values with another guess.
The weight update, ∆w is given by

∆w = α[(r + γmaxaQ(s′, a, w))

−Q(s, a, w)]∇wQ(s, a, w),

where r + γmaxaQ(s′, a, w) is our Q-target and
Q(s, a, w) is our current estimate of Q-value. The issue
is that we are using the same set of weights to estimate
the Q-target and the Q-value. At every step of training,
our Q-values shift but the target also does, so we are
essentially chasing a moving target! We can break this
correlation by using a separate network with parameter
w−. The new weight update is given by

∆w = α[(r + γmaxaQ(s′, a, w−))

−Q(s, a, w)]∇wQ(s, a, w).

This modification makes the training more stable as it
overcomes the short-term oscillations.

IV. EXPERIMENTAL DETAILS

A. Algorithm

Fig. 3: Algorithm for DQN with experience replay and
separate target network. (Image source: [6])

Our algorithm is largely similar to the one in Mnih et al,
without the image processing parts. We also use Huber loss
(called error clipping in [5]) to avoid exploding gradients.
For mean squared error loss (MSE) function, if the training
sample does not align with current estimates, the gradient
terms might explode and alter the network weights substanti-
tally leading to undesirable performance. Huber loss function
H(e) =

√
1 + e2−1, where e is the error between prediction

and target value, has the advantage of being differentiable
and has derivatives bounded between -1 and 1. Another
deviation from the original paper is the use of ε-decay, which
was implemented to exploit more optimal policies in later
episodes.

B. Network Architecture

We omitted all convolutional layers as no processing of
images is needed. The input to the network is a 8x1 tensor
of real values indicating the current state of the lander,
as described in I. The first fully-connected layer has 64
units, followed by another layer of 64 units, followed by
another one of 32 units. All these layers are separated by
Rectifier Linear Units (ReLU). Finally, the output layer is
another fully-connected linear layer with a single output
for each valid action. The optimization employed to train
the network is Adam, with learning rate of 0.01. The size
of the experience replay memory is 100,000 tuples. The
memory gets sampled to update the network every 4 steps
with minibatches of size 64.

C. Hyper-parameters

To find the best setting, we trained an agent for each
combination of hyper-parameters for a maximum of 1000
episodes, regardless of the state of the agent. If an agent
didn’t manage to accumulate a mean reward of 200 or greater
for the last 100 training episodes within 1000 episodes, we



said the agent did not complete learning. We then ran 10
independent trials, each consisting of 100 episodes, each
episode having a maximum of 500 time steps, and took the
average of the mean rewards of all 10 trials. Except for
the three key hyper-parameters, namely discount rate (γ),
learning rate (α), and ε decay, which we analyze in depth
next, the rest of the hyper-parameters were held constant,
including minibatch size, memory buffer capacity, and most
importantly, the neural network architecture, the choice of
optimizer, activation function, and loss function.

1) Discount rate: We considered a discount rate γ chosen
from 0.9, 0.99, and 0.999. Figure 4 shows the learning curves
for different discount rates with ε-decay = 0.99 and α =
0.0005.

0 200 400 600 800
Episode #

150

100

50

0

50

100

150

200

M
ov

in
g 

A
ve

ra
ge

 R
ew

ar
d

0.999
0.99
0.9

Fig. 4: Episodic learning curves of learners with different
discount rates. The y-axis is smoothed over 100 episodes.

• γ = 0.9: The agent never completed learning, for all
values of α used. It crashed into the ground almost every
time, and never managed a score of more than -100 in
an episode. The reason is that with such a low γ, the
agent was only able to credit actions to success up to
10 steps into the future, which is too short a horizon.

• γ = 0.99: With a 100-step look-ahead ability, the agent
could now land with varying degree of success. For
small α (0.001 or less), the agent landed without any
crash very often, but seemed to be more concerned with
landing than landing on target. Usually as soon as the
vehicle’s legs touched the ground, all engines went off,
regardless of whether it was at the landing pad or not.
For bigger α’s, the agent did not complete learning.

• γ = 0.999: The agent now assigned credit up to
1,000 steps into the future, which is also the simulated
environment’s limit. Similar to the case when γ = 0.99,
the agent could only solve the problem with small
learning rates and failed to do so if the learning rate gets
bigger. However, when the agent could complete the
training, it did so in fewer episodes than with γ = 0.99.
The agent was now concerned with not only landing
but also landing on target, which resulted in a higher
average score.

2) Learning rate: We considered a learning rate chosen
from 0.0005, 0.001, 0.005, or 0.01. We only discussed the

case of γ = 0.99 or γ = 0.999, as γ = 0.9 was too myopic
for the agent to pick up anything useful. We started with the
highest α, and lower the value until we were satisfied with
the training. Figure 5 shows the learning curves for different
learning rates with ε-decay = 0.99 and γ = 0.999.

0 200 400 600 800
Episode #

150

100

50

0

50

100

150

200

M
ov

in
g 

A
ve

ra
ge

 R
ew

ar
d

0.0005
0.001
0.005
0.01

Fig. 5: Episodic learning curves of learners with different
learning rates. The y-axis is smoothed over 100 episodes.

• α = 0.01: The agent almost learned how to land safely,
but was too eager to do so. The main engine were turned
off sooner than it should have been, resulting in a body-
first contact with the ground.

• α = 0.005: The agent was better at landing, although
it exhibited different behaviors with different discount
rates used. When γ = 0.99, more than half of the time
the vehicle did not manage to touch the ground within
the stipulated time. The rest of the time the vehicle
either landed with great accuracy, or cartwheeled to the
vast space when it was about to land. When γ = 0.999,
it didn’t cartwheel, but was too concerned with landing
at the right spot that it fired left and right even after it
has landed to adjust its horizontal position. Sometimes
this strategy backfired and the vehicle fell down the
slope and could not crawl back up.

• α = 0.001: The agent completed learning and could
consistently land safely most of the time, though when
γ = 0.99 it still on a few occasions descended a little
too fast and landed body-first instead.

• α = 0.0005: When γ = 0.999, the agent’s strategy was
to descend to a comfortable height, then with the main
engine on, slowly hover to a position above the landing
pad area by adjusting the left and right engines before
finally landing. When γ = 0.99, there was no hovering,
and hence no horizontal adjustment after descending.

3) ε-decay: : Given the complex, continuous state space
and the fact that reward only materializes at terminal states,
ensuring that the agent adequately explored all state-action
combination was important. This is controlled mainly by the
ε decay rate, which we chose from 0.9, 0.95, 0.99, 0.995, or
0.999. Figure 6 shows the learning curves for different decay
rates with α = 0.001 and γ = 0.999. We saw that if the
decay rate was too large (0.999) then the agent took too long
to learn because it spent all the time exploring new states. If



0 200 400 600 800
Episode #

200

100

0

100

200
M

ov
in

g 
A

ve
ra

ge
 R

ew
ar

d
0.999
0.995
0.99
0.95
0.9

Fig. 6: Episodic learning curves of learners with different
ε-decay rates. The y-axis is smoothed over 100 episodes.

the decay rate was too small (0.9) then the agent started to
unlearn after 600 steps or so. A decay rate between 0.99 and
0.995 gave the best result, although the former produced a
more stable learning curve.

After hyper-parameter tuning, we concluded that the best
performing agent was the one that was trained with α =
0.0005, γ = 0.999, and ε-decay = 0.99. Figure 7 shows
the learning curve of said agent, which achieved best 100-
episode average score of 200.11 within 572 episodes. Figure
shows a histogram of total reward earned for each episode
while it was learning. The two peaks represent two major
learning milestones: the leftmost one was when the lander
managed to hover and the rightmost one when it learned to
land on target.

0 100 200 300 400 500 600
Episode #

400

300

200

100

0

100

200

300

E
pi

so
de

 T
ot

al
 R

ew
ar

d

Fig. 7: The agent solved the LunarLander-v2 problem
in 472 episodes.

We then let our trained agent run for 100 consecutive
episodes without learning and measured its total rewards in
Figure 9. Only 2 crashes were recorded, and most episodes
ended with the vehicle landing safely on the ground (reward
more than 100).

V. PROBLEMS ENCOUNTERED AND PITFALLS

In earlier experiments, we built a network of two fully-
connected layers of 64 units each and an output layer, but

400 300 200 100 0 100 200 300
Episode Total Reward

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Fig. 8: A histogram of rewards over training episodes.

0 10 20 30 40 50 60 70 80
Episode #

0

50

100

150

200

250

E
pi

so
de

 T
ot

al
 R

ew
ar

d

Fig. 9: A histogram of rewards over training episodes.

the learning plateaued from the 500-600th step, at which
point the maximum average reward was 130. When we let
it continue learning for a few more hundred steps, the score
quickly dropped to zero and never recovered to the previous
record high. The introduction of an additional 32-unit hidden
layer immediately preceding the output layer solved this
issue We also experimented with MSE loss before deciding
on Huber loss, seeing that the latter could tremendously
shorten the training time by 20-30%. Figure 10 shows the
speed and stability gains from using Huber loss function.

Even though the agent was able to complete learning in
a reasonable number of episodes with these modifications,
performance could be further improved by a number of
changes. One of them is regarding the implementation of
replay memory buffer. The simplest way, which was what
we implemented, was to use deque in Python [2]. However,
sampling from deque can be extremely slow because it
doesn’t support fast random indexing [1]. Given more time,
we would have explored the option of a ring buffer data
structure, which is proposed in the original paper. In addition,
state-of-the-art frameworks such as Double DQN [8] and
Dueling DQN [9] could improve the stability of learning
by reducing the likelihood of overestimaation of Q-values
due to the maximum operation used in the formula for
finding the targets. A different approach based on policy



0 200 400 600 800
Episode #

200

100

0

100

200
M

ov
in

g 
A

ve
ra

ge
 R

ew
ar

d
Huber
MSE

Fig. 10: Learning curves of learners with Huber loss versus
MSE loss function.

gradient method such as Proximal Policy Optimzation (PPO)
[7] could also be explored.

VI. CONCLUSION

In this project, we successfully created a working agent
that was able to navigate the Lunar Lander environment
efficiently and provided a thorough comparison of model
hyper-parameters. DQN was chosen as the main algorithm,
seeing that it had succeeded in solving problems with similar
environment setup. By observing the agent while it was
training, we gained valuable insights into how different
choices of hyper-parameter values can affect the learning
procedure. After running a grid search on possible com-
binations of learning rate α, discount rate γ, and ε-decay
rate, the agent was trained on the one that produced the
highest mean reward. We also reflected on problems that
we encountered while working on this project, and proposed
potential improvements that could be made given more time
and resources.

REFERENCES

[1] Beat Atari with Deep Reinforcement Learning! (Part 1:
DQN). https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-
df57e8ff3b26.

[2] collections: High-performance container datatypes.
https://docs.python.org/2/library/collections.html.

[3] LunarLander-v2. https://gym.openai.com/envs/LunarLander-v2/.
[4] Simple Reinforcement Learning with Tensorflow Part 4: Deep

Q-Networks and Beyond). https://medium.com/@awjuliani/simple-
reinforcement-learning-with-tensorflow-part-4-deep-q-networks-and-
beyond-8438a3e2b8df.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing
Atari with Deep Reinforcement Learning. CoRR, abs/1312.5602, 2013.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller,
Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

[8] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. CoRR, abs/1509.06461, 2015.

[9] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network
architectures for deep reinforcement learning. CoRR, abs/1511.06581,
2015.


